Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

A three-dimensional inorganic/organic hybrid vanadium oxide complex with pentacoordinate $\mathrm{Co}^{\text {II }}$, $\left[\mathrm{CoV}_{2} \mathrm{O}_{6}\left(4,4^{\prime}\right.\right.$-bipy $)$]

Lan Yang, Haruo Naruke and Toshihiro Yamase*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
Correspondence e-mail: tyamase@res.titech.ac.jp

Received 21 May 2001
Accepted 10 September 2001

The title compound, poly[[cobalt(II)- μ-(hexaoxodivanadium$\left.\left.O: O^{\prime}\right)\right]$ - μ-bipyridine- $\left.N: N^{\prime}\right], \quad\left[\mathrm{CoV}_{2} \mathrm{O}_{6}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, has been prepared hydrothermally and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The structure consists of bimetallic oxide layers, $\left[\mathrm{Co}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}\right]$, linked through $4,4^{\prime}$-bipyridine ligands into a three-dimensional network.

Comment

Considerable attention has been focused on inorganic/organic hybrid materials, owing to their rich structural chemistry (Hagrman et al., 1999) and unique electrochemical and magnetic properties (Leroux et al., 1996; Lira-Cantú \& Gómez-Romero, 1998). Of these materials, vanadate $/ M L_{n}(M$ is $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn} e t c ; L$ is an organic ligand) compounds are regarded as V / M-bimetallic oxides coordinated by L, showing one-, two- and three-dimensional extended network structures, with different coordination numbers and geometries for

(I)
M and different shapes for L. Four examples of the vanadate/ $\mathrm{Co} L_{n}$ system are known, $\left[\left\{\mathrm{Co}\left(3,3^{\prime} \text {-bipy }\right)_{2}\right\}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}\right]$ (LaDuca et al., 2000), $\left[\mathrm{Co}(\mathrm{Hdpa})_{2} \mathrm{~V}_{4} \mathrm{O}_{12}\right]$ (LaDuca et al., 2001), $\left[\left\{\mathrm{Co}(\text { phen })_{2}\right\}_{2} \mathrm{~V}_{6} \mathrm{O}_{7}\right]_{n}$ (Zhang et al., 2000) and $\left[\mathrm{Co}\left(2,2^{\prime}-\right.\right.$ bipy) $]_{2}\left[\mathrm{~V}_{12} \mathrm{O}_{32}\right]$ (Ollivier et al., 1998) (3,3'-bipy is $3,3^{\prime}$-bipyridine, dpa is $4,4^{\prime}$-dipyridylamine, phen is 1,10 -phenan-

Figure 1
A view of the molecule of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted [symmetry codes: (i) $-x,-1-y,-2-z$; (ii) $x, 1+y, z$; (iii) $1-x,-1-y,-2-z$; (iv) $1+x, y$, $z-1$; (v) $x, y-1, z$; (vi) $x-1, y, 1+z]$.
throline and $2,2^{\prime}$-bipy is $2,2^{\prime}$-bipyridine). All the $\mathrm{Co}^{\mathrm{II}}$ atoms in these complexes achieve octahedral sixfold coordination with O and N atoms. We report here the crystal structure of the title complex, (I), which is the first example of $\mathrm{Co}^{\mathrm{II}}$ in a trigonalbipyramidal pentacoordinate geometry in the vanadate/ $\operatorname{Co} L_{n}$ system.

The structure of (I) is composed of bimetallic oxide [$\mathrm{Co}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}$] layers of corner-shared V-centred tetrahedra and Co-centred trigonal bipyramids (Figs. 1, 2 and 3). Within the layers are infinite chains of the type $-\mathrm{O}-\mathrm{Co}-\mathrm{O}-\mathrm{V}-\mathrm{O}-\mathrm{V}-$, which are crosslinked to other similar chains by O bridges, leaving only one terminal O atom (O 3 of the V 2 tetrahedron). This gives rise to four distinct centrosymmetric rings: two 12 -membered $\left[\mathrm{Co}_{2} \mathrm{~V}_{4} \mathrm{O}_{6}\right]$ rings $\left(\mathrm{Co}-\mathrm{V} 1-\mathrm{V}{ }^{\mathrm{iii}}-\mathrm{Co}^{\mathrm{iii}}-\right.$ $\mathrm{V} 1^{\mathrm{iii}}-\mathrm{V} 2$ and $\mathrm{Co}-\mathrm{V} 2-\mathrm{V} 1^{\mathrm{ii}}-\mathrm{Co}^{\mathrm{ii}}-\mathrm{V} 2^{\mathrm{i}}-\mathrm{V} 1^{\mathrm{i}}$) and two eight-membered $\left[\mathrm{V}_{4} \mathrm{O}_{4}\right]$ and $\left[\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{4}\right]$ rings $\left(\mathrm{V} 2-\mathrm{V} 1^{\mathrm{iii}}-\right.$

Figure 2
A ball-and-stick model of the $\left[\mathrm{Co}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}\right]$ layer in (I). The symmetry codes are as in Fig. 1.
$\mathrm{V} 2^{\mathrm{ii}}-\mathrm{V} 1^{\mathrm{ii}}$ and $\mathrm{Co}-\mathrm{V} 1^{\mathrm{i}}-\mathrm{Co}^{\mathrm{i}}-\mathrm{V} 1$, respectively) [symmetry codes: (i) $-x,-1-y,-2-z$; (ii) $x, 1+y, z$; (iii) $1-x,-1-$ $y,-2-z]$. The apical positions of the Co trigonal bipyramid are occupied by atoms N1 and N2 from different 4,4'-bipyridine ligands, thereby joining the polyhedral layers.

In the trigonal bipyramid, the mean axial $\mathrm{Co}-\mathrm{N}$ bond length $(2.139 \AA)$ is significantly longer than the mean basal $\mathrm{Co}-\mathrm{O}$ distance $(1.984 \AA)$. The axial $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$ angle is almost linear $\left[179.3(1)^{\circ}\right]$. The $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles lie between 109.8 (1) and 128.7 (1) ${ }^{\circ}$. The $\mathrm{O}-\mathrm{Co}-\mathrm{N}$ bond angles vary

Figure 3
A perspective view of the three-dimensional structure of (I). H atoms have been omitted.
between 88.5 (1) and $91.8(1)^{\circ}$. The $\mathrm{V1O}_{4}$ tetrahedron cornershares atoms O 1 and O^{i} from two $\mathrm{CoN}_{2} \mathrm{O}_{3}$ polyhedra, and atoms O 4 and O 6 from two $\mathrm{V} 2 \mathrm{O}_{4}$ tetrahedra. The $\mathrm{V} 2 \mathrm{O}_{4}$ tetrahedron is corner-shared with two $\mathrm{V1O}_{4}$ tetrahedra and only one $\mathrm{CoN}_{2} \mathrm{O}_{3}$ polyhedron through atom O 2 and this leaves one terminal atom, i.e. O3.

Similar $\left[\mathrm{V}_{4} \mathrm{O}_{12}\right]$ rings have also been observed in other vanadate/ $\mathrm{Co} L_{n}$ complexes, where every VO_{4} group has one terminal O atom. Bimetallic oxide $\left[\mathrm{Co}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}\right.$] layers with a different structure have been observed in $\left[\left\{\operatorname{Co}\left(3,3^{\prime}-\right.\right.\right.$ bipy $\left.)_{2}\right\}_{2} \mathrm{~V}_{4} \mathrm{O}_{12}$] (LaDuca et al., 2000), where the layers are composed of $\mathrm{CoN}_{4} \mathrm{O}_{2}$ octahedra and $\left[\mathrm{V}_{4} \mathrm{O}_{12}\right]$ groups, forming large 24-membered $\left[\mathrm{Co}_{4} \mathrm{~V}_{8} \mathrm{O}_{12}\right]$ rings. As shown in Figs. 1 and 3 , atoms Co and $\mathrm{Co}^{\text {vi }}$ [with a $\mathrm{Co} \cdots \mathrm{Co}^{\text {vi }}$ separation of $11.38 \AA$; symmetry code: (vi) $x-1, y, 1+z$] in two adjacent layers of the bimetallic oxide are crosslinked by a $4,4^{\prime}$-bipyridine ligand to form a three-dimensional network (Fig. 3). The two pyridine rings, $\mathrm{N} 1, \mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{N} 2^{\mathrm{vi}}, \mathrm{C} 6^{\mathrm{vi}}-\mathrm{C} 9^{\mathrm{vi}}, \mathrm{C} 10$, in the $4,4^{\prime}-$ bipyridine ligand are twisted relative to each other by 37.9 (2) ${ }^{\circ}$ (Fig. 1).

Experimental

All reagents were of analytical grade and were used without further purification. Hydrothermal reaction of $\mathrm{CoCl}_{2}(0.0962 \mathrm{~g}), \mathrm{NH}_{4} \mathrm{VO}_{3}$ $(0.0433 \mathrm{~g}), 4,4^{\prime}$-bipyridine $(0.1157 \mathrm{~g}),\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NOH}(0.0338 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ in a 20 ml Teflon-lined steel autoclave at 453 K for 72 h gave black plate-shaped crystals of (I) (yield 0.04 g). Found: H 1.92, C 28.75, N 6.67, V 24.82, Co 15.24\%; calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{CoN}_{2} \mathrm{O}_{6} \mathrm{~V}_{2}$: H 1.95, C $29.08, \mathrm{~N} 6.78$, V 24.67 , Co 14.27%. The IR spectrum exhibits bands in the range $1000-1610 \mathrm{~cm}^{-1}$, corresponding to $4,4^{\prime}$-bipyridine, and other bands in the range $920-500 \mathrm{~cm}^{-1}$, attributed to $\mathrm{V}=\mathrm{O}$ or $\mathrm{V}-\mathrm{O}-\mathrm{V}$ stretching. Thermogravimetric analysis shows a weight loss of 44.48% in the range $301-703 \mathrm{~K}$, corresponding to the decomposition of $4,4^{\prime}$-bipyridine.

Crystal data

$\left[\mathrm{CoV}_{2} \mathrm{O}_{6}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$	$Z=2$
$M_{r}=412.99$	$D_{x}=2.055 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $\overline{1} \alpha$ radiation
$a=8.1634(9) \AA$	Cell parameters from 3503
$b=8.572(1) \AA$	reflections
$c=10.171(1) \AA$	$\theta=3.1-27.5^{\circ}$
$\alpha=87.079(5)^{\circ}$	$\mu=2.63 \mathrm{~mm}^{-1}$
$\beta=75.833(4)^{\circ}$	$T=296 \mathrm{~K}$
$\gamma=75.233(6)^{\circ}$	Plate, black
$V=667.2(2) \AA^{\circ}$	$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID imaging-
plate diffractometer
ω scans
Absorption correction: numerical
(Higashi, 1995)
$T_{\text {min }}=0.597, T_{\text {max }}=0.769$
3920 measured reflections

Refinement

Refinement on F^{2}
$w R\left(F^{2}\right)=0.174$
$S=1.92$
2340 reflections
190 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left\{0.085\left[\max \left(F_{o}{ }^{2}, 0\right)\right.\right.\right.$
$\left.\left.\left.+2 F_{c}^{2}\right] / 3\right\}^{2}\right]$
2961 independent reflections
2174 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 10$
$l=-13 \rightarrow 13$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.93 \mathrm{e}^{\text {max }}{ }^{-3}$
$\Delta \rho_{\min }=-0.82 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Co-O1	$1.994(3)$	V1-O5	
Co-O2	$1.968(3)$	V1-O6	$1.658(3)$
Co-O5	$1.990(3)$	V2-O2	$1.768(3)$
Co-N1	$2.145(3)$	V2-O3	$1.666(3)$
Co-N2	$2.132(3)$	V2-O4	$1.619(3)$
V1-O1	$1.657(3)$	V2-O6	
V1ii	$1.809(3)$		

Symmetry codes: (i) $-x,-1-y,-2-z$; (ii) $x, 1+y, z$; (iii) $1-x,-1-y,-2-z$.

All H atoms of the $4,4^{\prime}$-bipy group were placed in fixed positions with ideal $\mathrm{C}-\mathrm{H}$ distances (1.07-1.08 \AA) and fixed $U_{\text {iso }}$ parameters ($0.033 \AA^{2}$).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure:

TEXSAN (Molecular Structure Corporation, 1985); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1336). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.

Higashi, T. (1999). NUMABS and SHAPE. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
LaDuca, R. L. Jr, Brodkin, C., Finn, R. C. \& Zubieta, J. (2000). Inorg. Chem. Commun. 3, 248-250.
LaDuca, R. L. Jr, Rarig, R. S. Jr \& Zubieta, J. (2001). Inorg. Chem. 40, 607612.

Leroux, F., Koene, B. E. \& Nazar, L. F. (1996). J. Electrochem. Soc. 143, L181183.

Lira-Cantú, M. \& Gómez-Romero, P. (1998). Chem. Mater. 10, 698-704.
Molecular Structure Corporation (1985). TEXSAN. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Ollivier, P. J., DeBoard, J. R. D., Zapf, P. J., Zubieta, J., Meyer, L. M., Wang, C., Mallouk, T. E. \& Haushalter, R. C. (1998). J. Mol. Struct. 470, 49-60.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Zhang, X., Tong, M. \& Chen, X. (2000). Chem. Commun. pp. 1817-1818.

